 Web Application Security: A Pragmatic Exposé

Abstract
Many individuals, organizations, and industries rely on web applications for the daily operations of their businesses. With the increasing deployment and dependence on these applications, significant attention has been directed towards developing more accurate and secure mechanisms to safeguard them from malicious web-based attacks. The slow adoption of the latest security protocols, coupled with the utilization of inaccurate and inadequately tested security measures, has hindered the establishment of efficient and effective security measures for web apps. This paper reviews recent research and their recommendations for web security over the last four years. It identifies code injection as one of the most prevalent web-based attacks in recent times. The recommendations presented in this paper offer a practical guide, enabling individuals and security personnel across various industries and organizations to implement tested and proven security measures for web applications. Furthermore, it serves as a roadmap for security developers, aiding them in creating more accurate and quantifiable measures and mechanisms for web security.
.
Key Words: Web application, Web security, Web attacks

Introduction
Security in web applications is an issue that warrants significant attention. Multiple solutions exist for implementing security measures in web applications, although these measures are not entirely flawless. Nevertheless, they serve as preventive measures against potential compromises in critical security considerations. Web applications typically comprise a client, a web server, an application server, and a database. This paper aims to address the following research question: What are the most recent and effective web security mechanisms for web application security?

To address concerns in web application security, delving into the realm of Transport Layer Security (TLS) proves indispensable. Discussions about TLS within web application security underscore its pivotal role in preserving data integrity, confidentiality, and user privacy. This paper examined some of the conceptual weaknesses and issues within SSL/TLS and this preceded the exploration of other related works on web application security [1].

TLS, a cryptographic protocol designed to ensure secure communications over computer networks, plays a pivotal role in establishing secure communication between web browsers, end-user-facing applications, and servers by encrypting transmitted data, thus preventing eavesdropping, ty qor tampering attacks. Weaknesses in TLS primarily pertain to its earlier versions, such as 1.0, 1.1, and 1.2, largely because these versions retained backward compatibility with SSL 3.0. This vulnerability stemmed from the continued support of an outdated cryptographic method known as cipher block-chaining (CBC) within TLS 1.2. Another vulnerability, known as 'FREAK,' allowed attackers to intercept HTTPS connections between vulnerable clients and servers and compel them to utilize 'export-grade' cryptography. This export-grade cryptography featured outdated encryption key lengths that were susceptible to decryption. Despite the obsolescence of export-grade cryptography, servers supporting RSA export cipher suites could enable a man-in-the-middle (MITM) attacker to deceive both the client and server into adopting older and weaker 40- and/or 56-bit export cipher suites, thereby downgrading their connection. The prior version of TLS employed a two-trip handshake.

TLS 1.3 has now become the de facto standard, relying on two types of encryptions: asymmetric, which necessitates a public and private key, and symmetric key encryption, utilizing a shared key. Asymmetric encryption is employed during the "handshake," occurring before any data transmission. This handshake determines the cipher suite to be used for the session, essentially specifying the type of symmetric encryption that both the browser and server will employ. It is noteworthy that while TLS 1.3 offers significantly enhanced security compared to its predecessors, its slow adoption has provided an opportunity for security vulnerabilities in TLS 1.2, which is still in widespread use. The paper does not delve into other TLS-related attacks and implementation issues. Some of the vulnerabilities discussed here are attributable to backward compatibility, weaker algorithms, and the two-trip handshake, all of which have been addressed in the current TLS 1.3 version. However, to safeguard against all known and unknown TLS downgrade attacks, the recommended best practice is to update information systems to the latest version of TLS 1.3.

Research conducted by Gigamon Threatinsight [2] revealed that 20% of corporate traffic employs TLS 1.3. Prominent web services such as Google and Facebook, as well as content delivery networks (CDNs), have transitioned to TLS 1.3, and major web browsers like Chrome, Firefox, Microsoft Edge, and Safari also support it. However, a significant portion, approximately 77.38%, continues to rely on TLS1.2, with only 0.09% on TLS 1.1, 2.47% on TLS 1.0, and 0.04% exclusively using SSL. Notably, 56% of East-West Traffic is encrypted, while 44% remains unencrypted. Consequently, owing to the slow adoption of TLS 1.3, numerous websites may still be susceptible to man-in-the-middle attacks and other security threats stemming from vulnerabilities in previous TLS versions.

It is crucial to note that transitioning to TLS 1.3 poses various challenges for organizations, encompassing compatibility issues with older systems, potential interoperability challenges between different TLS versions, resource-intensive implementation requirements, initial network performance impacts necessitating optimization, the need for enhanced monitoring and management procedures, compliance hurdles for regulated industries, and the possibility of uncovering unforeseen vulnerabilities during the early stages of implementation. These challenges span across compatibility, interoperability, resource allocation, network performance, monitoring, regulatory adherence, and evolving security measures, requiring careful planning and strategic management during the upgrade process.

Subsequent sections of this paper will explore various proposals put forth by researchers to enhance web application security.

Background literature or Related work
Fu et al. [3] emphasize the significance of secure communication channels in web applications such as online banking, email, and e-commerce, which heavily rely on X.509 public-key certificate authentication among users. SSL/TLS protocols employ X.509 for authentication purposes. However, the use of expired or self-signed certificates poses a potential threat to web security, making these applications susceptible to exploitation by cyber attackers.

An analysis conducted by [3] regarding the lifecycle of leaf certificates reveals noteworthy findings. Typically, standard certificates have a shorter validity period, with approximately 86% having a duration of less than three years. In contrast, self-signed certificates exhibit a longer validity period, with around 70% extending beyond three years. Furthermore, the study identifies instances where certificates are employed before their designated issuing time, indicating potential misconfiguration or malicious behavior. Certificates with a commencement date earlier than 1950 are identified as counterfeit, as they cannot be issued by a trusted Certificate Authority (CA). Notably, most certificates have an actual usage period of no more than one day. Additionally, a significant number of certificates continue to be used even after their expiration.

To mitigate the malicious use of expired certificates, users should enhance their awareness of security practices and regularly assess the effectiveness of their certificates during usage. Shortening the validity period of certificates is a practical approach to bolstering web security, as it compels administrators to frequently update and validate their certificates. Web service applications should prioritize the use of certificates issued by reputable CAs. In cases where self-signed certificates are employed for economic or convenience reasons, it is advisable to set shorter validity periods to enhance security.

Mukazi et al. [4] introduced a web application firewall (WAF) utilizing the ModSecurity and Reverse Proxy Method. This WAF concept serves as a security measure to safeguard web applications against various threats and attacks. WAFs are capable of packet filtering, blocking hazardous HTTP requests, and performing logging functions. The authors conducted testing on the WAF by launching attacks against a web application. The test attacks included cross-site scripting (XSS), SQL injection, and unauthorized vulnerability scanning on the web application's web pages.

The results demonstrated that, in the absence of ModSecurity and the reverse proxy, the XSS attack on the webpage succeeded. However, with ModSecurity configured, the XSS attack was thwarted. This study underscores the critical vulnerability that exists when a web server lacks a WAF, as it fails to filter or validate inputs from clients, leaving it susceptible to exploitation. Implementing a WAF and a proxy server, such as a reverse proxy, becomes imperative to filter and validate requests before they reach the server. As demonstrated in this research, this implementation is instrumental in enhancing the security of web applications.

Yadav et al. [5] propose several strategies to enhance database security. They advise against creating a database on the server where the application is installed with administrative privileges. Instead, they suggest encrypting files and backup data, and the implementation of firewalls.

Regarding Operating System security, their recommendations encompass meticulous and secure installation practices, appropriate system configuration, and the installation of intrusion detection systems.

In the context of mobile applications, they advocate for the adoption of various security evaluation methods. These methods encompass validation, controlled access, session monitoring, encryption, error management, and data security.

Liang et al. [6] introduce a secure and user-controlled framework called SecureWeb, which addresses the issue of sensitive data leakage on web servers. Their paper focuses on safeguarding user passwords and offers a comprehensive solution for protecting various types of sensitive data.
In their approach to password security, they utilize a U-disk as a security token for user authentication, significantly enhancing security by storing the authentication key on the U-disk rather than on the computer or server. Additionally, SecureWeb establishes a secure environment through a browser extension, with encryption and decryption processes managed by a local computer's stub program. A password manager called SecurePWD, combined with a Document Object Model (DOM), ensures both security and accessibility.
One crucial aspect addressed by SecureWeb is the isolation of the secure environment module from the application code, preventing malicious client-side code from stealing user data. They achieve this through a technique called "Shadow DOM," which isolates the application DOM.
To protect sensitive data beyond passwords, SecureData is implemented as an extension of SecurePWD within the SecureWeb framework. SecureData empowers users to have control over their sensitive data and offers a unified protection solution for various types of sensitive information.
While SecureWeb is deemed a highly secure approach to password management, it relies on the assumption that users do not lose their U-disk to attackers. The interfaces between the key management module, encryption module, and secure environment module are also proven to be secure against potential attacks.
In summary, Liang et al.'s SecureWeb framework provides a robust and user-centric solution for mitigating sensitive data leakage on web servers, with a focus on password security and the protection of diverse sensitive data types. Their approach emphasizes user control and security, with specific measures such as U-disk-based authentication and the use of Shadow DOM to isolate the secure environment module.
Mitropoulos et al. [7] conducted an in-depth analysis of defense mechanisms aimed at countering web code injection attacks, with a strong focus on the precision of detection. They introduced a classification system for web application defenses against injection attacks, categorizing them into three broad groups: etiological, symptomatic, and hybrid.

The etiological category encompasses mechanisms designed to thwart attacks by addressing their causes and origins. Within this category, three distinct approaches were identified: Parse-tree validation, policy enforcement, and instruction set randomization.

The symptomatic category encompasses various strategies that scrutinize application behavior to detect attacks based on their undesirable characteristics. Two primary approaches are used in this category: taint tracking and training. “Training” refers to a mechanism used in the context of taint tracking and defense against web application attacks. Specifically, it is a process where a system learns all valid legitimate code statements during a training phase. This is typically done by creating signatures or rules that define what is considered safe or trusted code. During production, the trained system will only recognize and approve the execution of code statements that match the learned patterns. This helps in preventing the execution of potentially malicious or untrusted code. Training can be applied in various ways depending on the implementation, and it is often used in combination with taint tracking techniques. Taint tracking involves marking and tracing the propagation of untrusted or “tainted” data throughout a program. If any of this tainted data is used in a potentially risky operation, such as sending data to a vulnerable database or network, the taint tracking scheme can take appropriate actions to mitigate the risk. Overall, training in relation to taint tracking and defense mechanisms aims to improve the accuracy and effectiveness of the system in identifying and preventing code injection attacks.

Hybrid mechanisms combine elements from both etiological and symptomatic categories.

Throughout their evaluation of these security mechanisms, the authors noted that some of them could be bypassed by attackers with knowledge of their inner workings. However, certain mechanisms, such as SQLCheck, Amnesia, and libAnomaly, were highlighted as having undergone extensive testing and demonstrating greater accuracy in their performance.

The authors recommend enhancing the precision of experimental testing for new mechanisms and providing access to code. They stress the importance of researchers reporting results on false positives and false negatives for their mechanisms, as it allows for a better understanding of their effectiveness and aids in addressing circumvention vulnerabilities.

Ibarra-Fiallos et al. [8] have devised an effective design and implementation for safeguarding web applications against injection attacks. Injection attacks pose a significant threat to web applications, but most existing security measures against them lack a high level of accuracy. In response to this challenge, the authors propose a security solution that boasts a remarkable accuracy rate of 98.9%.

Their security measure hinges on input field filtering, which is based on OWASP Stinger and a set of regular expressions, coupled with a sanitization process. This implementation rigorously validates all incoming data in an HTTP request, including headers and parameters. Each field is subjected to a specific regular expression to ensure that only expected input is accepted, and common terms utilized in injection attacks are sanitized. Notably, this filtering mechanism demonstrates superior accuracy compared to Web Application Firewalls (WAFs).

Agereindra Helmiawan et al. [9] conducted a comprehensive analysis of a website through penetration testing, employing the Open Web Application Security Project (OWASP) framework. This assessment involved reconnaissance, scanning, and the exploitation of the target website. The findings revealed a few minor security vulnerabilities, including potential exposure to sensitive data, injection risks, and the presence of eight open ports.
The authors propose several security enhancements to address these issues. These include the implementation of security measures like closing unnecessary ports or enhancing Secure Shell (SSH) security on open ports. Additionally, they recommend the incorporation of logging and monitoring mechanisms to enable the tracking of access history and activities occurring on the website.
Conde Camillo da Silva et al [10] proposed an intrusion detection system using the IBM LGBM algorithm. They used machine learning algorithms to train models to classify different attack requests made to the webserver to increase the security of web systems. The data set used for carrying out the training came from CSIC 2000. The algorithms tested were: J48, Naive Bayes, OneR, Random Forest, and IBM LGBM algorithms were tested. The paper reveals that IBM was the best in all metrics when compared to others in the literature.
Kambourakis et al. [11] introduced MECSA, an open-source web application service designed for individuals who wish to promptly evaluate their email provider's security status. This assessment covers both inbound and outbound communication channels in a voluntary, privacy-preserving, and non-intrusive manner. The research primarily focuses on the communication between SMTP servers (MTA-to-MTA) and addresses email security concerns from both end-user and internet measurement perspectives.

On the other hand, Kubota et al. [12] presented a framework that scrutinizes callback functions to identify vulnerable sections when an application is in execution. Unlike Web Application Firewalls (WAFs), this framework has the capability to pinpoint vulnerabilities in callback functions. This is significant because even if countermeasures are applied to a specific attack request, there's a possibility of attacks bypassing the WAF. With this proposed framework, it's possible to detect vulnerable source code and subsequently implement measures to fortify it or substitute it with a secure version. The framework has demonstrated effectiveness in addressing two critical vulnerabilities: authentication leaks and SQL injection vulnerability.

Method
This paper analyzed and synthesized some evolving trends and best practices coming from papers written in the last 4 years on web application security in view of offering a more insightful and practical guide to security administrators and individuals involved in the security of web browsers and web applications. I classified these papers based on the broad categories of web attacks and extracted their useful recommendations.
This paper conducted an in-depth examination and consolidation of emerging trends and recommended practices from research papers published over the past four years regarding web application security. The goal was to provide a more informative and applicable resource for security administrators and individuals responsible for web browser and web application security. The papers were categorized into two main groups: web attacks and defense strategies, and valuable recommendations were extracted from them for reference.
[image:]
 Fig. 1. Classification of web attacks [8]
I recommend M. Khari, “Comprehensive study of web application attacks and classification,” 2016. For a more comprehensive overview of the classification of Web Application Security.

[image:]
 Fig. 2. Defenses against Web Application Attacks [7]

 RESULT

Table 1. shows a review of some journal/conference articles in the last 4 years (2018- 2022) and their recommendations on web security.

Table 1.
	Authors
	Attack classification
	Vulnerability
	Recommendations for Defense

	 Fu, Z. et al., (2018)
	Authentication based attack
	Expired certificates and or self-signed can lead to compromises on web security leading to potential vulnerabilities that can be exploited by cyber-attackers.

	Shortening certificate validity periods is a key measure for boosting web security. It compels administrators to update and validate certificates more frequently. Web service applications should opt for certificates issued by trusted Certificate Authorities (CAs). In cases where self-generated certificates are used for economic or convenience reasons, they should also have shorter validity periods.

	 Muzaki, O. et al., (2020)
	Client-side attack/ command execution attack

	Cross-site scripting (XSS) SQL injection on the webpage of the web application and unauthorized vulnerability web scanning
	Implement WAF through MOD security with reverse proxy

	Yadav, D. et al, (2018)
	Client-side attack/ command execution attack

	Web applications are unable to check the appropriate inputs for the request. Due to this vulnerability attackers can take undue advantage by entering malicious information in the application bypassing the security of the website
	Parameters are assessed for validity based on their data types and field lengths. Their legality is determined by examining patterns, values, and the absence of issues like null values or duplicates. To enhance database security, it is suggested to avoid creating a database on the server where the application has administrative access. It's also important to encrypt stored files and backups while implementing firewall protection.

	Liang et al., (2018)

	Authentication based attack / information disclosure
	Secure, practical, and user-controlled framework for mitigating the leakage of sensitive data. Secure Web protects users' passwords and aims to provide a unified protection solution to diverse sensitive data
	A U-disk functions as a security token, storing the key for user authentication and enhancing security. It differs from traditional methods by keeping the key within the U-disk rather than on the computer or server. Moreover, it creates a secure web environment using a browser extension. Encryption and decryption processes are carried out by a compact program on the user's local computer. Security and availability are maintained through the amalgamation of a password manager (SecurePWD) and Document Object Model (DOM). To thwart potential data theft by malicious client-side code, SecureWeb employs a method known as "Shadow DOM" to isolate the application DOM.

	Mitropoulos, P. et al. (2019)

	Client-side attack/ command execution attack

	Vulnerabilities leading to Web code injection attacks
	The SQLCHECK, Amnesia, and libAnomaly were mentioned as having been extensively tested and are more accurate. The authors recommend improving the accuracy of the experimental testing of new mechanisms and code availability because in many cases researchers do not provide results on false positives and false negatives for their mechanisms and worse still do not quantify them

	Ibarra-Fiallos et al. (2021)
	Client-side attack/ command execution attack

	Vulnerabilities leading to Web applications against injection attacks
	They put forward a security measure with a 98.4% accuracy rate, designed to filter input fields based on OWASP stinger, which utilizes regular expressions and a sanitization process. This approach thoroughly validates all data within an HTTP request, including headers and parameters, employing specific regular expressions for each field (verifying only expected content) and eliminating common terms linked to injection attacks. Notably, this filtering system surpasses the accuracy of a Web Application Firewall (WAF).

	Agreindra Helmiawan et al. (2020)
	Information disclosure/ Authorization based attack
	Vulnerabilities causing Exposure to sensitive data, injection, and open ports.

	The authors advise incorporating security measures like the closure of ports or the reinforcement of SSH security, along with the activation of logging for open ports. Furthermore, they recommend the introduction of logging and monitoring functionalities to enable the tracking of past accesses and activities on the website.

	Conde Camillo da Silva et al. (2022)
	Command and execution attacks. All attacks listed in the classification of web attacks
	Vulnerabilities that can be exploited by normal and abnormal Attack requests
	The paper reveals that IBM LGBM algorithm was the best in all metrics when compared to algorithms used to model attack request for instruction detection in the literature.

OBSERVATION/ ANALYSIS

Scholarly analysis reveals that a substantial focus has been directed towards addressing client-side command and execution attacks on web applications, as illustrated in Figure 1. This concentration stems largely from the prevalence of web code injection attacks among various types of attacks over the past four years. Despite the development of numerous mechanisms aimed at mitigating these attacks, particularly those falling under the etiological category as shown in Figure 2, it is noteworthy that many of these mechanisms still possess vulnerabilities that allow for bypassing.
Therefore, there should be a heightened emphasis on the precision of detection methods and the adoption of multiple security measures, alongside intrusion detection systems like Web Application Firewalls (WAFs) and other strategies proposed by the authors reviewed in this paper. With the continuous proliferation of web applications and the growing imperative to secure them against malicious attacks, researchers must redouble their efforts to devise more efficient and effective methods for web application security.
This concise review of recent literature has highlighted some well-established, accurate, and robust security mechanisms that can be effectively combined to protect web applications. Industries and organizations should proactively adopt modern security protocols like TLS 1.3 and implement a comprehensive suite of security measures as outlined in this paper, along with routine security patch updates.

CONCLUSION
As technology continues to advance in the realm of web application security, it is evident that attackers are also evolving their methods. Consequently, the imperative before us is to implement well-established and quantifiable security defense measures to safeguard web applications. In this context, I firmly believe that the field of machine learning holds significant promise in training more robust algorithms, exemplified by IBM Watson LGBM, which can enhance existing security mechanisms to effectively thwart attacks.
The primary contribution of this paper lies in its provision of recent research recommendations, offering valuable insights to web security researchers and practitioners seeking the most accurate security mechanisms for web applications. Furthermore, it puts forth suggestions for further research, both in the etiological domain and concerning client-side/command and execution attacks. Ultimately, this paper contributes to the ongoing pursuit of effective web security measures for the protection of web applications.

REFERENCES
[1]https://beaglesecurity.com/blog/article/importanceof-tls-1-3-ssl-and-tls-vulnerabilities.html(accessed Feb. 6, 2023).

[2] https://www.gigamon.com/content/dam/gated/artls-research-paper.pdf (accessed Feb. 6, 2023

[3] P. Fu, Z. Li, G. Xiong, Z. Cao, and C. Kang, “SSL/TLS
Security Exploration Through X.509 Certificate’s Life Cycle Measurement,” in 2018 IEEE Symposium on Computers and Communications (ISCC), Jun. 2018, pp. 00652–00655. doi: 10.1109/ISCC.2018.8538533.
[4] R. A. Muzaki, O. C. Briliyant, M. A. Hasditama, and H. Ritchi, “Improving Security of Web-Based Application Using ModSecurity and Reverse Proxy in Web Application Firewall,” in 2020 International Workshop on Big Data and Information Security (IWBIS), Oct. 2020, pp. 85–90. doi: 10.1109/IWBIS50925.2020.9255601.

[5] D. Yadav, D. Gupta, D. Singh, D. Kumar, and U. Sharma,
“Vulnerabilities and Security of Web Applications,” in 2018 4th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India, 	Dec. 	2018, 	pp. 	1–5. 	doi:10.1109/CCAA.2018.8777558.

[6] S. Liang, Y. Zhang, B. Li, X. Guo, C. Jia, and Z. Liu, “Secureweb: Protecting sensitive information through the web browser extension with a security token,” Tsinghua Sci. Technol., vol. 23, no. 5, pp. 526–538, Oct. 2018, doi: 10.26599/TST.2018.9010015.

[7] D. Mitropoulos, P. Louridas, M. Polychronakis, and A. D. Keromytis, “Defending Against Web Application Attacks: Approaches, Challenges and Implications,” IEEE Trans. Dependable Secure Comput., vol. 16, no. 2, pp. 188–203, Mar. 2019, doi: 10.1109/TDSC.2017.2665620.

[8] S. Ibarra-Fiallos, J. B. Higuera, M. Intriago-Pazmino, J. R. B. Higuera, J. A. S. Montalvo, and J. Cubo, “Effective Filter for Common Injection Attacks in Online Web Applications,” IEEE Access, vol. 9, pp. 10378–10391, 2021, doi: 10.1109/ACCESS.2021.3050566.

[9] M. Agreindra Helmiawan, E. Firmansyah, I. Fadil, Y. Sofivan, F. Mahardika, and A. Guntara, “Analysis of Web Security Using Open Web Application Security Project
10,” in 2020 8th International Conference on Cyber and IT Service Management (CITSM), Pangkal Pinang, Indonesia, 	Oct. 	2020, 	pp. 	1–5. doi:10.1109/CITSM50537.2020.9268856.

[10] R. Conde Camillo da Silva, M. P. Oliveira Camargo, M. Sanches Quessada, A. Claiton Lopes, J. Diassala Monteiro Ernesto, and K. A. Pontara da Costa, “An Intrusion Detection System for Web-Based Attacks Using IBM Watson,” IEEE Lat. Am. Trans., vol. 20, no. 2, pp. 191– 197, Feb. 2022, doi: 10.1109/TLA.2022.9661457.

[11] G. Kambourakis, G. D. Gil, and I. Sanchez, “What Email Servers Can Tell To Johnny: An Empirical Study of Provider-to-Provider Email Security,” IEEE Access, vol.
 8, pp. 130066–130081, 2020, doi: 10.1109/ACCESS.2020.3009122.

[12] K. Kubota, W. K. K. Oo, and H. Koide, “A New Feature to Secure Web Applications,” in 2020 Eighth International Symposium on Computing and Networking Workshops
(CANDARW), Naha, Japan, Nov. 2020, pp. 334–340. doi: 10.1109/CANDARW51189.2020.00071.

1

image1.jpg

image2.jpg

